Spectral Methods Based on the Least Dissipative Modes for Wall Bounded MHD Flows
نویسندگان
چکیده
We present a new approach for the Spectral Direct Numerical Simulation (DNS) of LowRm wall bounded magnetohydrodynamic (MHD) flows. The novelty is that instead of using bases like the usual Tchebychev polynomials, that are easy to implement but incur heavy computational costs in order to resolve the Hartmann boundary layers that arise along the walls, we use a basis made of elements that already incorporate flow structures such as anisotropic vortices and Hartmann layers. We show that such a basis can be obtained from the eigenvalue problem of the linear part of the governing equations with the problem’s boundary conditions. Since this basis is not always orthogonal, we develop a spectral method for non-orthogonal bases. We then demonstrate the efficiency of this method on the simple case of a laminar channel flow with periodic forcing. In particular, we show that this method eliminates the computational costs incurred by the Hartmann layer, and this for arbitrary high magnetic fields B. We then discuss the application of our method to nonlinear, turbulent flows for which the number of modes required to resolve the flow completely decreases strongly when B increases instead of increasing, as in current Tchebychev-based methods.
منابع مشابه
A stochastic boundary forcing for dissipative particle dynamics
The method of dissipative particle dynamics (DPD) is an effective, coarse grained model of the hydrodynamics of complex fluids. DPD simulations of wall-bounded flows are however often associated with spurious fluctuations of the fluid properties near the wall. We present a novel stochastic boundary forcing for DPD simulations of wall-bounded flows, based on the identification of fluctuations in...
متن کاملControlling density fluctuations in wall-bounded dissipative particle dynamics systems.
Dissipative Particle Dynamics (DPD) simulations of wall-bounded flows exhibit density fluctuations that depend strongly on the no-slip boundary condition and increase with the level of coarse graining. We develop an adaptive model for wall-particle interactions that eliminates such oscillations and can target prescribed density profiles. Comparisons are made with ideal no-slip boundary conditio...
متن کاملMHD FREE CONVECTIVE FLUCTUATING FLOW THROUGH A POROUS EFFECT WITH VARIABLE PERMEABILITY PARAMETER
In the present paper, we have studied MHD free convective two dimensional unsteady viscous incompressible flows through a porous effect bounded by an infinite vertical porous plate with constant suction. The permeability of the porous medium fluctuates in time about a constant mean, and the viscosity of fluid is assumed to vary as a linear function of temperature. The flow is permitted under th...
متن کاملSoret and chemical reaction effects on a three-dimensional MHD convective flow of dissipative fluid along an infinite vertical porous plate
An analytical study was performed to study effects of thermo-diffusion and chemical reactions on a three-dimensional MHD mixed convective flow of dissipative fluid along an infinite vertical porous plate with transverse sinusoidal suction velocity. The parabolic partial differential equations governing the fluid flow, heat transfer, and mass transfer were solved using perturbation technique and...
متن کاملExtension Ability of Reduced Order Model of Unsteady Incompressible Flows Using a Combination of POD and Fourier Modes
In this article, an improved reduced order modelling approach, based on the proper orthogonal decomposition (POD) method, is presented. After projecting the governing equations of flow dynamics along the POD modes, a dynamical system was obtained. Normally, the classical reduced order models do not predict accurate time variations of flow variables due to some reasons. The response of the dynam...
متن کامل